

Development of a Harmonized Multi-Sensor Global Active Fire Data Set: Current Status and Multi-Product Validation

Joanne Hall (Co-I), Chengquan Huang (Co-I), Louis Giglio (PI) University of Maryland, Department of Geographical Sciences, USA

Collaborators: Wilfrid Schroeder & Ivan Csiszar (NOAA/NESDIS), Christopher Schmidt (UW/Madison), Krishna Vadrevu (NASA Marshal), Martin Wooster (Kings College London)

Motivation

The recent deployment of the new generation of weather satellites provides an opportunity for the establishment of a robust global network of geostationary fire data that can greatly complement existing polar orbiting satellite fire products.

Table 1
Summary of the key advances in the latest generation of geostationary Earth observation satellites, compared to their predecessors.

Geostationary Sensor	Spatial Resolution* (km)	Spectral Bands	Mid-wave Infrared Channel Saturation (K)	Full-Disk Temporal Resolution (min)
Previous Generation GOES Imager	4	5	335	180
GOES-R ABI	2	16	400	5 – 15
Meteosat First Generation MVIRI	5	3	250	30
Meteosat Second Generation SEVIRI	3	12	335	5 – 15
Previous Generation Himawari-7 (MTSAT-2)	4	5	330	30
Advanced Himawari Imager-8	2	16	400	10

^{*} Applicable to mid-wave infrared channel used in active fire detection.

Main Goals

Augment existing GWIS fire mapping capabilities

- Incorporate harmonized multi-sensor geostationary fire data sets following comprehensive data validation/quality assessment
- Promote common GIS-friendly fire data format
- Incorporate essential science data layers (e.g., FRP, cloud cover, block-out zones)
 supporting robust regional fire assessment

Educate users on product characteristics and potential applications

Promote regional workshops

Int J Appl Earth Obs Geoinformation 83 (2019) 101928

Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

Project Status

Project began July 2018

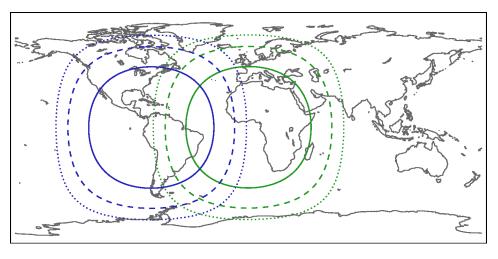
Validation of GOES-16 ABI and MSG SEVIRI active fire products

J.V. Hall^{a,*}, R. Zhang^a, W. Schroeder^b, C. Huang^a, L. Giglio^a

^a University of Maryland, Department of Geographical Sciences, College Park, MD, USA
 ^b NOAA/NESDIS/OSPO Satellite Analysis Branch, College Park, MD, USA

GOES-16 ABI and MSG SEVIRI data validation complete (Summer 2019)

• Paper published: https://www.sciencedirect.com/science/article/pii/S0303243419306336


Prototype harmonization of GOES-16 and MSG active fire data

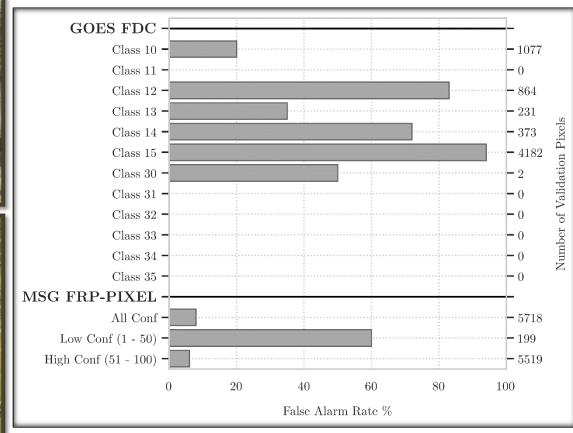
Active Fire Products

Advanced Baseline Imager (ABI) on board the NOAA GOES-16 satellite

Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on board the ESA Meteosat Second Generation (MSG) satellite series

	GOES-16 ABI	MSG SEVIRI
Product	Fire Detection and Characterization (FDC; Schmidt et al., 2012)	Fire Radiative Power (FRP-PIXEL; Wooster et al., 2015)
Spatial Resolution	2km at nadir	3km at nadir
Temporal Resolution	Full Disk: 15 minutes CONUS: 5 minutes	Full Disk: 15 minutes Europe: 5 minutes
Active Fire Product Values	10(30) = processed 11(31) = saturated 12(32) = cloudy 13(33) = high prob. 14(34) = med prob. 15(35) = low prob.	Fire Confidence (0 – 100%)

Solid, dashed, dotted lines indicate the boundaries at which the area of the pixel footprint grows to a factor of 2, 4, and 8 times larger than at the subsatellite point.


Validation Summary

	GOES-16 ABI FDC	MSG SEVIRI FRP-PIXEL
Validation Date Range	18 Jul 2018 – 30 Sep 2018 (87 days)	1 Nov 2017 – 28 Feb 2018 (120 days)
Total number of Landsat-8 scenes (within 5/6 minutes separation from mid-scan)	5,760	14,032
Total number of pixels sampled (includes fire/non-fire/land/water/clouds)	43,113	300,945
Total number of <u>non-fire</u> pixels with coincident reference fire activity (omission error)	36,384 (84%)	295,227 (98%)
Pixels flagged as fire <u>with</u> coincident reference fire activity (true positives)	1527 (23%)	5,261 (92%)
Pixels flagged as fire <u>without</u> coincident reference fire activity (commission error)	5214 (77%)	457 (8%)

GOES-16 ABI

GOES-16 ABI

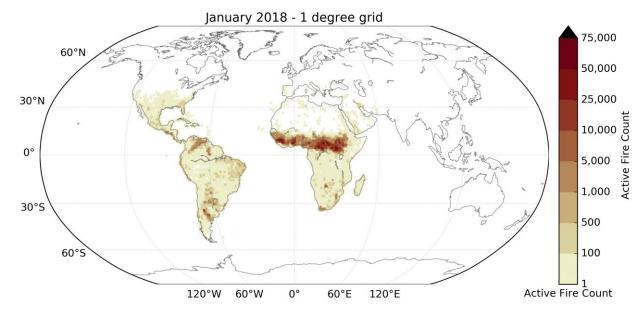
Commission & Omission Errors

MSG SEVIRI lon = 36.4169

MSG SEVIRI

False Alarms: Bare Soil Regions **Omissions: Cloud & Water Mask**

Cloud Water/Invalid Ecosystem


Data Harmonization: Initial Look

Objective: reconcile existing geostationary fire products, addressing differences in methodology, and leveraging algorithm development efforts

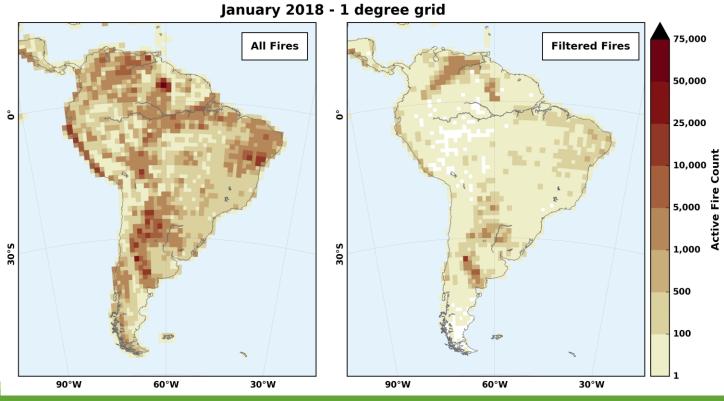
Promote algorithm comparison/exchange and learn from experience

Active Fire Count within 1 degree grid cell

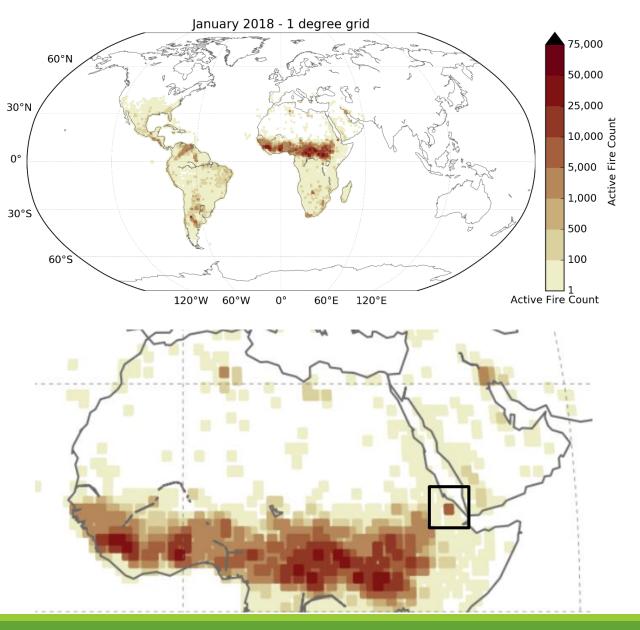
- All Fires
- High Confidence Fires
- Non-Veg. Fire Removal

High Confidence Fires with Non-Veg. Fire Removal

Filtering Fires By Class/Confidence

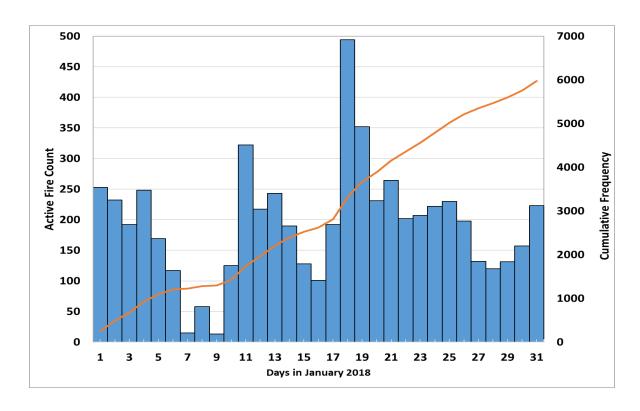

GOES-16 ABI FDC product suffers from large commission errors

Removing Class 15 is a bare minimum

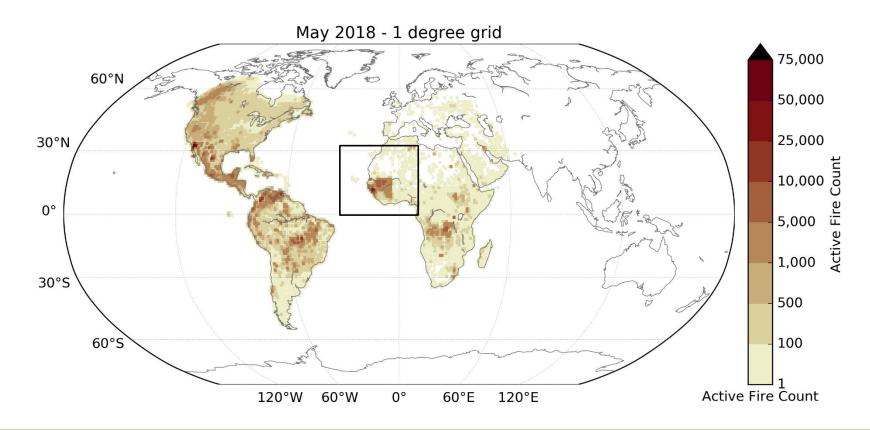

Figure: Filtered Fires (right) contain high probability fires with nonvegetation fire sources removed

FDC Class: 10(30), 11(31), 13(33)

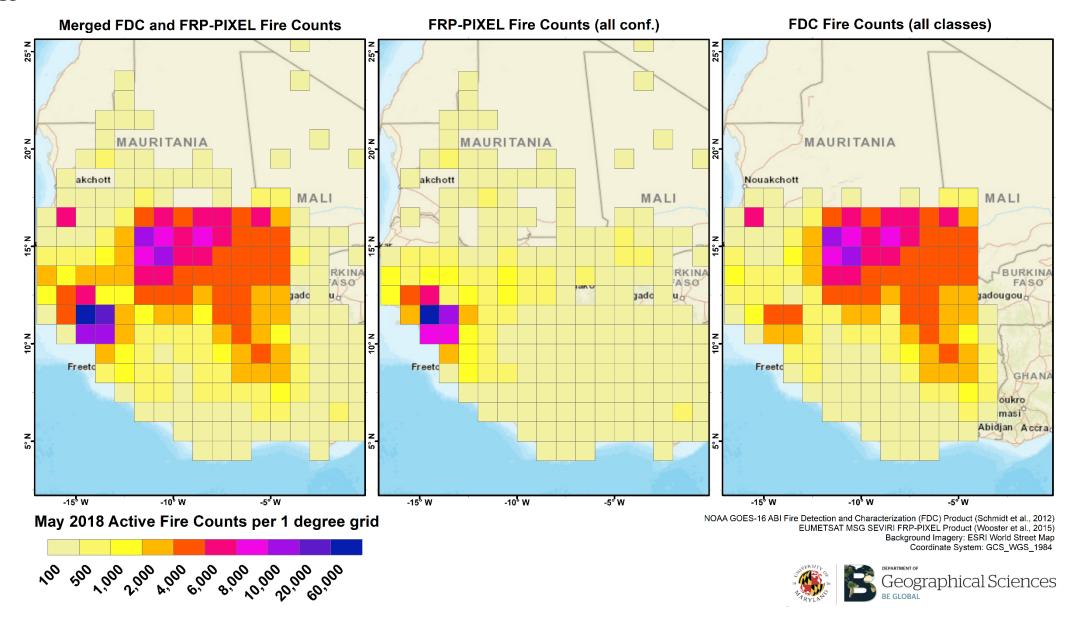
FRP-PIXEL: Confidence > 50%


High Conf. Fires WITHOUT Non-Veg. Fire Removal

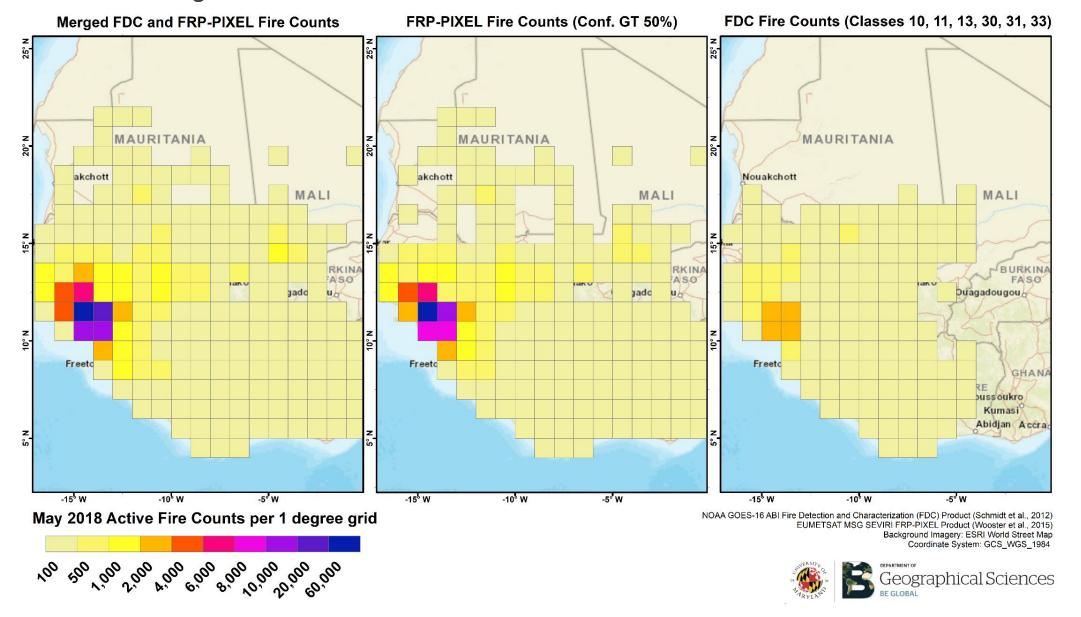
Erta Ale Shield Volcano, Ethiopia


5,979 fires in a 1 degree grid cell in January 2018

We want to avoid including non-vegetation fires in harmonization



Artificial Boundary: False Alarms


Issue with GOES-16 ABI FDC product over Western Africa bare soil regions

All Fires

High Conf. Fires & Non-Vegetation Fire Removal

Next Steps

Implement more sophisticated harmonization method

Implement GEO-specific persistent source masks

- Supplement MODIS mask now being used
- Large commission error in GOES-16 FDC product

GWIS distribution

User documentation

Thank You