ACT GOVERNMENT

Operational Applications of Remote-sensing for Bushfire Management

Adam Leavesley, Marta Yebra, Albert Van Dijk, Petter Nyman, Brian Levine, Tony Scherl, Neil Cooper

I'M GOING TO TALK ABOUT:

- 1. Fire severity (dNBR)
- 2. Ways to use LiDAR products
 - Fire suppression
 - Prescribed burning
 - Flammability modelling

Australian Flammability
Monitoring System (Marta Yebra)

Thanks to GWIS for my invitation

DIFFERENTIAL NORMALISED BURN RATIO

- Developed by US Forest Service- FIREMON
- ACT Parks 3 season pilot
- Autumn 2015-2017
- Ten (10) rural burns
- Size range 115ha 3838ha

TRUTHING

Ground fuels burnt (%)
Shrub cover (%)
Shrub scorch (%)
Canopy scorch (%)
Canopy burnt (%)

55H FA

76428 84037

ACCURACY 5 m

(∆NBR)

Accuracy

Aiming for >85% (Anderson et al. 1976)

But...
There are some inherent issues with dNBR.

De Santis and Chuvieco 2009

556

DIFFERENTIAL NORMALISED BURN RATIO

Our solution – 3 classes

Unburnt	<50% ground burnt	ΔNBR <0.1
Low	>50% ground burnt <50% canopy scorch and burnt	0.1< ΔNBR <0.4
High	>50% canopy scorch and burnt	ΔNBR <0.4

 \triangle NBR Range = -0.09 – 0.99

Fire severity analysis of the Cotter River Burn, April 2015

Fire severity analysis of the Cotter River Burn, April 2015

Fire severity analysis of the Cotter River Burn, April 2015

FIRE EFFECTS

Static classes are sub-optimal for the range of land management functions:

Fuel mapping
Post-fire hydrological risk
Emissions reporting
Biodiversity assessment

MULTIPLE USES

Static classes are sub-optimal for the range land management functions

Fuel mapping
Post-fire hydrological risk
Emissions reporting
Biodiversity assessment

Results of burning program 2015-2017

Unburnt = 59 %
Low severity = 38 %
High severity = 3 %

Northern slopes burnt more readily than southern slopes

ADAPTIVE MANAGEMENT

Prescribed burn flammability map derived from analysis of 10 burns 2015-2017.

Proportion of pixels which burnt by aspect Yellow = 64% Red = 12%

Wildfire severity

dNBR from Sentinel 2

Green = Unburnt

Yellow = Low/Moderate

Red = High

Black = Very high

Pierce's Creek Fire, ignited 1 November 2018

Wildfire severity

Pierce's Creek Fire, ignited 1 November 2018

Wildfire severity

Evaluating:

△NBR (Sentinel 2)
△NBR (Landsat 8)
Radiative Transfer Model
Vegetation Structure Perpendicular Index
Random Forests

Pierce's Creek Fire, ignited 1 November 2018

Why invest in LiDAR for fire/fuel mapping?

Inadequate knowledge of fuels and fuel condition was implicated in the Margaret River (Keelty, 2012) and Lancefield escapes (Carter *et al.* 2015).

LiDAR-derived Fuel Mapping

AIMS:

- Develop easily-derived experimental products for land managers.
- 2. Develop prototype processes and specifications.

OFHA and Project Vesta inputs

(Van Dijk, 2017; Hines et al. 2010; Gould et al. 2007)

LiDAR-derived estimate of Elevated Fuel

LiDAR for Suppression

Fire severity analysis, April 2013
Severity: Red = High, Yellow = Low, Green = Unburnt

Square Rock Fire 28 January 2019

LiDAR-derived Elevated Fuel, May-June 2015 Blue = Low, Yellow = Moderate, Red = High

LiDAR for Suppression

Infrared image of a Remote Area Fire Team winch operation
White = Hot, Black = Cold (photo: ACT ESA)

LiDAR-derived Elevated Fuel, May-June 2015 Blue = Low, Yellow = Moderate, Red = High

Piccadilly burn, LiDAR-derived Elevated Fuel

dNBR Fire Severity Assessment, Piccadilly

LiDAR summary

- 1. Generally suitable for fuel mapping, but... issues with bark and litter.
- 1. Suitable for carbon, post-burn hydrology and biodiversity assessments
- 2. Low frequency still delivers value for suppression and prescribed burning
- 3. Towards "remote-sensing enabled systems"

SUB-CANOPY MICROCLIMATE MODEL

Combines:

- Slope
- Aspect
- Vegetation shading

To estimate the effects of shortwave raditiation at the forest floor (Nyman *et al.* 2018).

Net solar radiation in April

dNBR of prescribed burn April 2018

Other Work in Australia

 Australian Flammability Monitoring System (Marta Yebra, ANU)

Thanks to:
Colleagues in ACT Parks, ACT RFS and ACT F&R for skilfully implementing the fire suppression and burning programs.

