

Photo by Doug Bevington

MARIANO GARCÍA^{1,2}, PETER NORTH³, JACQUELINE ROSETTE³, MAGÍ FRANQUESA^{1,2}, MARÍA PILAR MARTÍN^{4,2}, ROSARIO GONZALEZ-CASCON⁵, JAVIER BECERRA^{4,2}

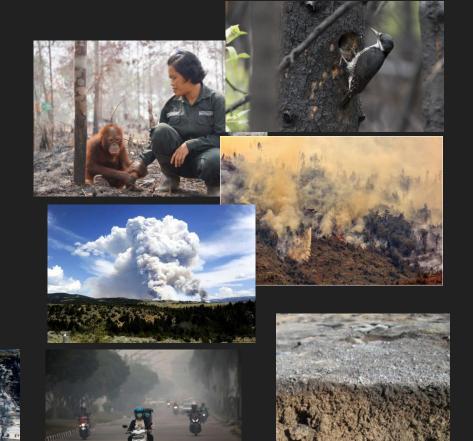
¹ UNIVERSITY OF ALCALÁ, DEPARTMENT OF GEOLOGY, GEOGRAPHY AND ENVIRONMENT, ALCALÁ DE HENARES, MADRID, SPAIN ² UNIDAD ASOCIADA GEOLAB

³ GLOBAL ENVIRONMENTAL MODELLING AND EARTH OBSERVATION (GEMEO), DEPARTMENT OF GEOGRAPHY, SWANSEA UNIVERSITY, SA2 8PP, UNITED KINGDOM

⁴LABORATORIO DE ESPECTRO-RADIOMETRÍA Y TELEDETECCIÓN AMBIENTAL (SPECLAB), CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC), MADRID, SPAIN

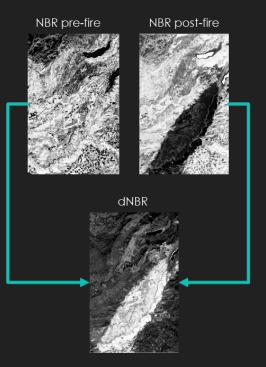
⁵ NATIONAL INSTITUTE FOR AGRICULTURE AND FOOD RESEARCH AND TECHNOLOGY, DEPARTMENT OF ENVIRONMENT, MADRID, SPAIN

Presentation Outline


- O Introduction
- Research questions
- O Methodology
- O Results
- Conclusions and future works

Introduction

- Providing accurate information on fire effects is critical to understanding post-fire ecological processes and design appropriate land management strategies
- Effects on: vegetation pattern distribution, GHGs emissions; habitat quality, soil nutrients, carbon and hydrological cycles (Bond et al., 2004; van der Werf et al., 2010; Casas et al., 2015; Yue et al., 2015).
- Socio-economic implications including health issues related to air quality, property damage or even human casualties (Chuvieco 2010).



Introduction

- The impact of a fire is generally described in terms of its severity, which represents the ecological change caused by fire (Lentile et al., 2006).
- Spatial and temporal heterogeneity of fire effects → remote sensing techniques.
- Spectral indices: NBR, dNBR, RdNBR (Miller and Thode 2007; Miller et al. 2009)
- Radiative transfer approach (Chuvieco et al., 2006; 2007; de Santis et al., 2010)
- Validation using CBI (0-3) or GeoCBI (de Santis and Chuvieco, 2009).
- Inability to accurately capture damage on under- and mid-story vegetation in low and moderate severity areas, especially under high canopy cover (Miller and Quayle, 2015).

Universidad DEPARTAMENTO DE GEOLOGÍA, GEOGRAFÍA Y MEDIO AMBIENTE

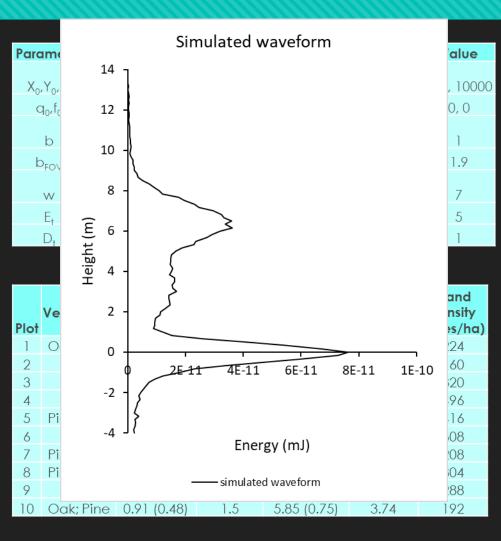
Evaluating the capability of LiDAR data to measure post-fire effects using a radiative transfer modelling approach

• Only structural changes on canopy are considered

• Snag detection using intensity data (Wing et al., 2015; Casas et al., 2016).

Research questions

- What the potential of full waveform LiDAR data for providing a comprehensive characterization of post-fire effects?
- O What is the sensitivity of LiDAR metrics to different severity degrees as measured by CBI?
- Can we develop a new LiDAR metric to better capture severity?



Methods

• Full waveform simulation

- FLIGHT 3D radiative transfer (North, 2010)
 - Monte Carlo evaluation of photon transport within a 3D representation of vegetation.
 - O Energy binned into m bins according to path length.
 - Sensor parameters equivalent to Land, Vegetation and Ice Sensor (LVIS).
 - Vegetation is modeled using geometric primitives.
 - Turbid medium described by leaf area density, leafangle distribution; and the optical properties of leaves, branch, shoot and ground components.
 - Forest plots represented using field information (García et al., 2010)

Methods

• Simulation of post-fire scenarios

Severity levels based on CBI. Simplifications (Chuvieco et al., 2006)

- § §frata (A= substrate; B&/erb/devstshubs@m@treeston) m; C- shrubs and trees up to 5 m; D) suppressed and intermediate trees; E) dominant and
 Ø Ø ørigtbigin ansistersed;
- O Vapablesnassesseiccolor (proportion of ash and charcoal).
 - Chadrage en abibanger ((A).reduction).
 - 财好rfotogenotter (%).(change in leaf color).
- Each Shattanin's Scored bindividually and averaged to provide a plot CBI value.iving and resprouting species (%)
- O Optical properties !! ty (%).
 - 8 Reflectance measured (ASD FieldSpec® 3 / GER-2600 spectroradiometer)
- Each stratum is scored individually and gy BER and to provide a plot CBI value
- 1348 simulations for each plot after removing unrealistic scenarios

Variable change and associated CBI

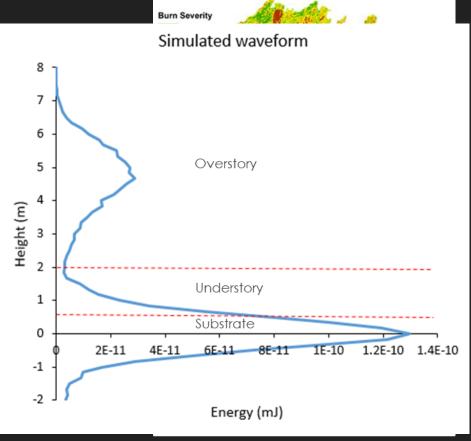
Susbtrate		Understory and Overstory		
CBI	% change in color	PFA (% of scorched / brown leaves)	PCC(% LAI reduction)	
0	0	0	0	
0.5	5	12.5	7.5	
1	10	25	15	
1.5	25	52.5	42.5	
2	40	80	70	
2.5	60	95	85	
3	80	100	100	

PFA and PCC combination

CBI-Percentage of Foliage Altered								
4-		0	0.5	1	1.5	2	2.5	3
e of	0	0	0.25	0.5	0.75	1	1.25	1.5
lag ang	0.5	0.25	0.5	0.75]	1.25	1.5	1.75
Cover Cho	1	0.5	0.75]	1.25	1.5	1.75	2
	1.5	0.75]	1.25	1.5	1.75	2	2.25
	2]	1.25	1.5	1.75	2	2.25	2.5
	2.5	1.25	1.5	1.75	2	2.25	2.5	2.75
U	3	1.5	1.75	2	2.25	2.5	2.75	3

Methods

O LiDAR metrics

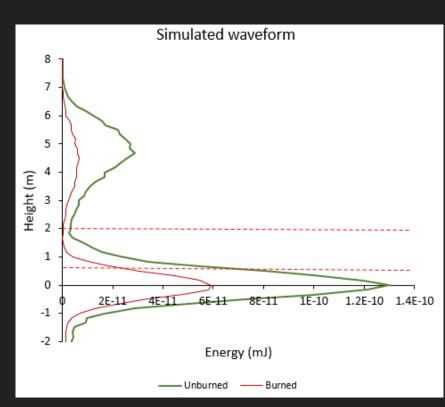

• Common structural metrics:

 1st to 9th deciles of the energy relative to the ground elevation; 25th and 75th percentile; quadratic mean canopy height; mean canopy height; coefficient of variation of the canopy height profile.

O Area under the waveform

- Waveform divided in 3 strata:
 - O Subtrate (ground signal).
 - O Understory (2 m).
 - Overtory (> 2m).
- O Modeling burn severity

$$O Rel_Chg_{LM} = \frac{|LM_{post-fire} - LM_{pre-fire}|}{LM_{pre-fire}}$$


García et al., (2017). http://dx.doi.org/10.1002/2015JG003315

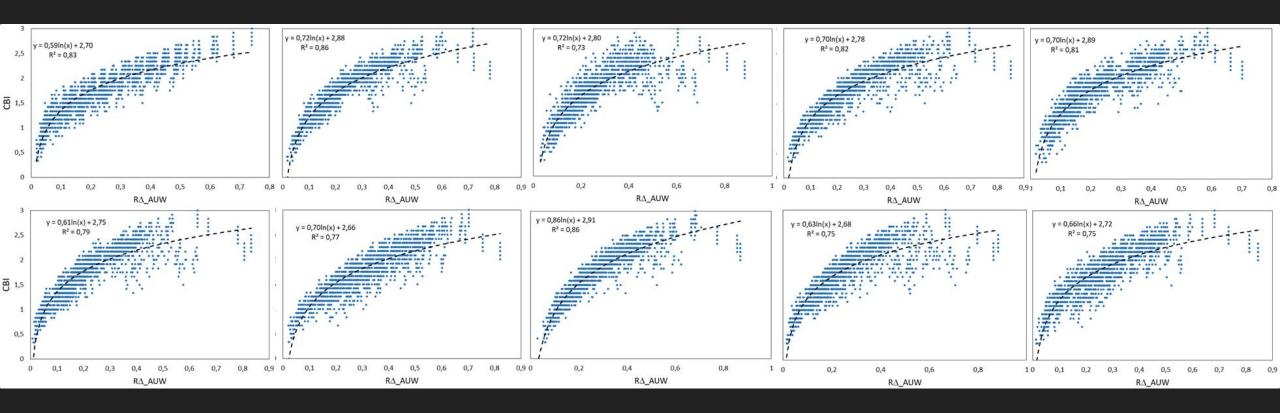
Results

• Sensitivity of LiDAR to severity levels

Scenario	CBI Substrate	CBI Understory	CBI Overstory	CBI Plot
13	0.5 (5% color change)	2 (52.5% color 85% LAI)	0 (0% color 0% LAI)	0.83 (Low)
870	2 (40% color change)	2.25 (100% LAI)	1.25 (52.5% color 15% LAI)	1.83 (Moderate)
1247	3 (80% color change)	2.25 (100% LAI change)	2 (52.5% color 85% LAI)	2.42 (High)

Results

• LiDAR metrics evaluation



Results

• Severity modeling

Conclusions and future works

- Full waveform LiDAR shows sensitivity to different severity degrees.
- LiDAR capture fire caused damage beyond structural changes
- Traditional LiDAR metrics offered less capability to estimate severity
- A new metric (R∆_AUW) has been proposed showing higher sensitivity to severity as measured by CBI.
- \bigcirc Evaluation of R<u>A</u>AUW in different ecosystems
- Application to discrete return data
- Application to satellite LiDAR missions (GEDI)

Thank you!!!

mariano.garcia@uah.es